

Multiple High Grade Li2O Channel Samples at White Bear Confirms Extensive Drill Target

## **Highlights**

- Four channel sampled outcrops at the White Bear Lithium Discovery have successfully returned high grade surface Li2O within coarse spodumene mineralisation:
  - 23WB001 1m @ 2.39% Li2O
  - 23WB002 1m @ 2.16% Li2O and 1m at 1.23%
  - 23WB003 1m @ 1.09% Li2O
  - 23WB004 1m @ 0.84% Li2O
- Coarse (≤70cm), spodumene-bearing high-grade lithium mineralised zone, now identified over an approximately 300m strike length by 100m at its widest within five pegmatite outcrops at the White Bear Lithium Discovery.
- Drill testing is now a priority and FIN is fully funded to commence an initial maiden 1,500m drill programme to test the White Bear Lithium Discovery during Q1 2024. FIN has now submitted documents for the approval of an aggressive 5,000m diamond drilling programme.
- Channel sample results which extend over a significant strike length confirm recent exceptionally high-grade lithium results from the initial rock chip samples collected from White Bear including (refer ASX announcement 20 November 2024):
  - 6.50% Li2O (138181)
  - 6.85% Li2O (138182)
- Strong relationship between anomalous lithium and potassium/rubidium ratios (K/Rb<35), suggest that the system at White Bear is likely to be highly fractionated and lithium fertile.
- Elevated Cs (Max 1,284ppm) and Ta2O5 (Max 217ppm) were also reported within the channel sample results.

**Fin Resources Director, Mr Jason Bontempo stated** "<u>*These high-grade lithium*</u> <u>*channel sample results*</u> confirm that White Bear is a very exciting new grassroots discovery that warrants immediate drill testing. The confirmation that we now have high-grade surface Li20 over a broad strike length of 300m and up to 100m wide with large spodumene crystals means we are extremely focussed on drill testing this exciting target as soon as possible during Q1 2024." ASX Release 4 December 2023 ASX: FIN

#### **Corporate Directory**

**Director** Jason Bontempo

Technical Director Brian Talbot

Director and Company Secretary Aaron Bertolatti

**Registered** Office

35 Richardson Street West Perth WA 6005

info@finresources.com.au www.finresources.com.au

ABN: 25 009 121 644



### WHITE BEAR CHANNEL SAMPLE ASSAYS

Fin Resources ('Fin') is pleased to announce that the assays received from the follow up channel sampling at the White Bear Lithium Discovery have returned high grade Li2O within four of the five megacrystic spodumene rich pegmatite outcrops (see Figures 1, 2 & 3).

Significantly, two of the outcrops that have been channel sampled reported >2% Li2O within the megacrystic spodumene zone (see Table 1).

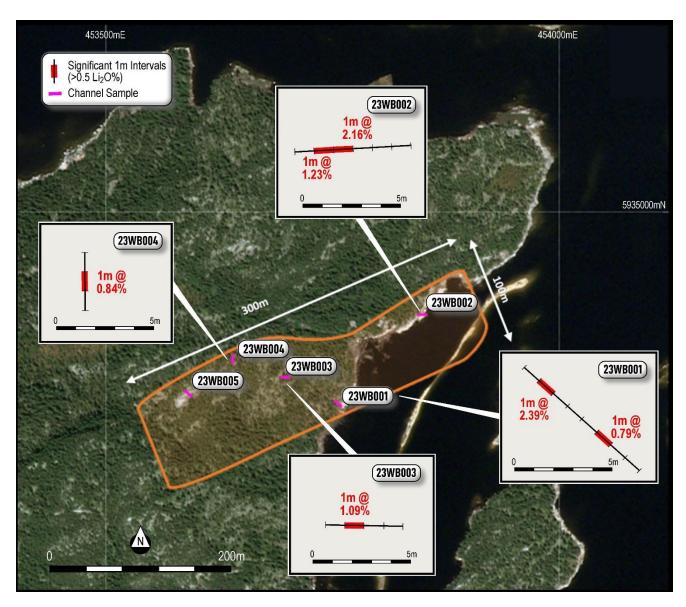



Figure 1 | Map showing channel sample locations and significant results across the White Bear Lithium Discovery



| Channel ID | Sample<br>ID | Lithology | Width<br>of<br>Sample | Cs ppm | Li %  | Li2O % | Ta2O5<br>ppm | K/Rb   | Nb/Ta | Zr/Hf |
|------------|--------------|-----------|-----------------------|--------|-------|--------|--------------|--------|-------|-------|
| 23WB001    | E809502      | Pegmatite | 1m                    | 713    | 0.366 | 0.79   | 69.49        | 32.60* | 0.13  | 3.51  |
| 23WB001    | E809507      | Pegmatite | 1m                    | 543    | 1.108 | 2.39   | 217.11       | 17.57  | 0.20  | 1.77  |
| 23WB002    | E809512      | Pegmatite | 1m                    | 400    | 1.005 | 2.16   | 44.69        | 32.52  | 0.86  | 3.61  |
| 23WB002    | E809513      | Pegmatite | 1m                    | 92     | 0.573 | 1.23   | 17.22        | 17.45  | 0.85  | 3.21  |
| 23WB004    | E809519      | Pegmatite | 1m                    | 182    | 0.390 | 0.84   | 84.62        | 15.67  | 0.94  | 3.92  |
| 23WB003    | E809523      | Pegmatite | 1m                    | 47     | 0.508 | 1.09   | 18.80        | 25.88  | 0.38  | 7.17  |

*Table 1* Significant (>0.50%) results from White Bear Channel Sampling highlighting a highly fractionated pegmatite.

\*Results impacted by Rb results over upper detection limit

The channel samples at White Bear have also reported a low K/Rb ratio and elevated Cs like the rock chip samples previously reported by FIN<sup>1</sup>. Research has shown that pegmatites hosting low K/Rb ratios are likely to be highly fractionated and lithium fertile<sup>2</sup>.

In total 28 channel samples and 11 regional rock chip samples collected during the follow up field work at Cancet West. A full suite of elements was analysed for and the relevant lithium pathfinder elements for each sample can be found in Appendix 1 – Tables 2 & 3.

These assay results and the field observations, combined with evidence from the recently completed follow up field work programme<sup>3</sup>, provide confirmation of there being potential for an evolved LCT (lithium-caesium-tantalum) pegmatite system at White Bear.

Results from the regional rock chip sampling completed during the follow up field work programme can be found within Appendix 2.

It appears that the spodumene rich zone within outcrop 23WB0005 was missed by channel sampling, since spodumene mineralisation was confirmed during the follow up field work programme using the LIBS on rock chips from this outcrop. This may be due to a nugget effect, associated with the megacrystic spodumene crystals noted within a number of the outcrops.

A northeast-trending, coarse spodumene, lithium mineralised zone has now been defined over a 300m strike length and 100m width, covering the five spodumene-bearing pegmatite outcrops at the White Bear Lithium Discovery (Figure 1). These field observations may indicate that all of the identified occurrences are part of the same intrusive body. The White Bear spodumene-bearing zone commonly hosts crystals of beryl, orange garnets and pockets of coarse quartz, in addition to the megacrystic spodumene (≤70cm) within a coarse quartz zone.

Fin is now aggressively preparing and planning for a winter drilling programme. The drilling proposal has now been submitted to the Quebec Department of Natural Resources and Forests for review. Fin is aiming to gain approval for an ~5,000m drill programme that will be drilled in two to three phases with a first high priority phase of ~1,500m of diamond drilling planned to begin within Q1 2024.

<sup>&</sup>lt;sup>1</sup> FIN ASX Announcement – Exceptionally High-Grade Lithium Confirmed at Cancet West 20/11/2023

<sup>&</sup>lt;sup>2</sup> Selway, J.B., Breaks, F.W., and Tindle, A.G., 2005, A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits: Exploration and Mining Geology, v. 14, no. 1–4, p. 1–30.

<sup>&</sup>lt;sup>3</sup> FIN ASX Announcement – More Significant Spodumene Discovered at Cancet West 2/11/2023



The Cancet West Project (79km2) sits approximately 45 kms west of Winsome Resources (WR1:ASX) Cancet lithium deposit (Cancet) and 100 kms west of Patriot Battery Metal's (PMT.ASX) Corvette Lithium Deposit (Corvette) (see Figure 2).



Figure 2 | Large green spodumene crystal located within the northern end of the White Bear discovery outcrop (channel 23WB001)





Figure 3 | Megacrystic spodumene crystals located near to channel 23WB002

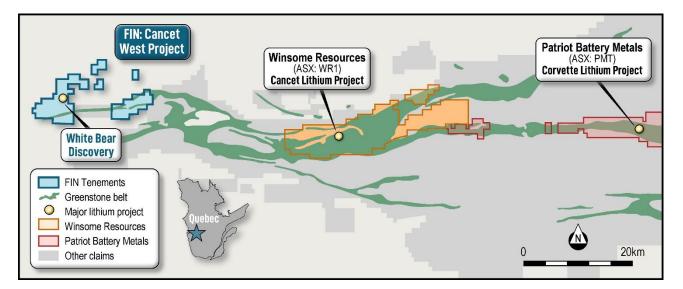



Figure 4 | Location of White Bear and the Cancet West Lithium Project in Quebec, Canada



### **ROSS LITHIUM PROJECT ROCK CHIP RESULTS**

A total of 9 outcrop and 1 float grab samples were collected by Mercator geologists across the Ross property during the initial two-day field visit. All pegmatite samples were submitted for sodium-peroxide borate fusion analysis. Additional pathfinder elements were analysed using a 34 element 4-acid digestion ICP analysis.

No anomalous lithium values were returned for the Ross property, with all values being below 0.01 % Li (see Appendix 2). The assay results were also assessed for pathfinder element anomalism by comparison to a pegmatite geochemical database compiled from the James Bay Area<sup>4</sup>. The most anomalous pathfinder elements were Total Rare Earth Oxides (TREO) and Th levels in pegmatite samples 138203, 138204 and 138227. Both of these elements are more indicative of NYF (Niobium-Yttrium-Fluorine) pegmatites but can show geochemical overlap with LCT pegmatites<sup>5</sup>. The TREO and Th results are shown in Figures 5.

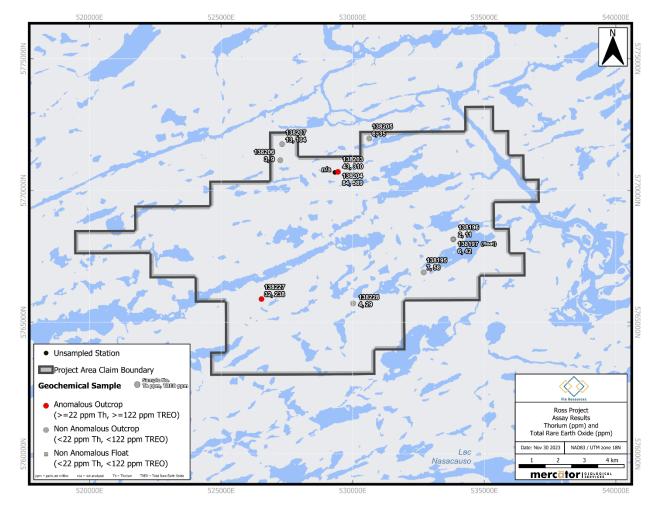



Figure 5 | Total rare earth elements reported in rock grab samples from the Ross Lithium Project

<sup>&</sup>lt;sup>4</sup> Pegmatite geochemical database (n=668) was derived from the Québec Ministére des Ressources naturelle et des Foréts SIQÉOM rock geochemistry database <u>https://sigeom.mines.gouv.qc.ca/signet/classes/l1102\_aLaCarte</u>; Anomalous values are defined as Tukey outliers with values exceeding 1.5\*IQR (interquartile range) above the third quantile (75th percentile)

<sup>&</sup>lt;sup>5</sup> Černý, Petr & Ercit, T. Scott. (2005). The classification of granitic pegmatites revisited. The Canadian Mineralogist. 43. 2005-2026. 10.2113/gscanmin.43.6.2005.



## Authorised for release by the Board of Fin Resources Limited

#### For further information contact:

Jason Bontempo - info@finresources.com.au

#### **Cautionary Note**

The interpreted presence of pegmatite, pegmatite granite or visual spodumene does not equate to lithium mineralisation. The Company is encouraged by the geology identified by the initial field and desktop work programmes within Cancet West, but no quantitative or qualitative assessment of economic mineralisation is possible at this stage. The Company plans to undertake further field work to test for potential lithium mineralisation and further laboratory analysis of drill samples, rock chip samples and channel samples is required to determine if the spodumene, mapped pegmatites and pegmatite granites have the potential to host economic mineralisation.

#### **Competent Persons Statement**

The information in this report that relates to Exploration Results is based on information compiled by FIN and reviewed by Mr. Thomas Ridges who is a member of the Australian Institute of Mining and Metallurgy. Mr. Thomas Ridges is an employee of Sustainable Resources Pty Ltd consulting to FIN and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Ridges consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

### **Forward looking statements**

This release may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on FIN's current expectations, estimates and assumptions about the industry in which FIN operates, and beliefs and assumptions regarding FIN's future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and not guaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of FIN. Actual values, results or events may be materially different to those expressed or implied in this release. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this release speak only at the date of issue of this release. Subject to any continuing obligations under applicable law and the ASX Listing Rules, FIN does not undertake any obligation to update or revise any information or any of the forward-looking statements in this release or any changes in events, conditions or circumstances on which any such forward looking statement is based. Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement.



# Appendix 1:

# Channel Sample and Rock Chip Assays and Coordinates/Lithology at Cancet West

## **Channel Samples**

|         | Method                | WGHT  | PF370 | MA250  | MA250  | MA250  | PF370 | MA250  | PF370 | MA250 |       | PF370 | MA250  |        | MA250  | MA250  | MA250 |
|---------|-----------------------|-------|-------|--------|--------|--------|-------|--------|-------|-------|-------|-------|--------|--------|--------|--------|-------|
|         | lower detection limit | 0.01  | 0.01  | 0.04   | 0.02   | 0.1    | 0.05  | 0.02   | 0.01  | 0.01  | Calc  | 0.001 | 0.1    | Calc   | 0.05   | 0.04   | 0.001 |
| Sample  | Туре                  | Wt_kg | AI_%  | Bi_PPM | Ce_PPM | Cs_PPM | Fe_%  | Hf_PPM | К_%   | К_%   | K_PPM | Li_%  | Li_PPM | Li2O_% | Mo_PPM | Nb_PPM | P_%   |
| E809504 | Rock                  | 8.27  | 9.17  | 1.13   | 0.21   | 1284.3 | 0.29  | 0.32   | 9.01  | 8.88  | 88800 | 0.18  | 1618.6 | 0.39   | 0.9    | 1.44   | 0.003 |
| E809501 | Rock                  | 17.57 | 8.72  | 5.88   | 0.59   | 494    | 0.21  | 1.2    | 8.09  | 7.77  | 77700 | 0.013 | 117.8  | 0.03   | 0.78   | 3.09   | 0.003 |
| E809502 | Rock                  | 10.62 | 8.18  | 3.15   | 0.55   | 713    | 0.31  | 0.37   | 6.81  | 6.52  | 65200 | 0.366 | 2000   | 0.79   | 0.2    | 7.37   | 0.003 |
| E809503 | Rock                  | 8.8   | 7.39  | 5.38   | 2.38   | 404.3  | 0.3   | 1.28   | 4.28  | 4.26  | 42600 | 0.046 | 437.2  | 0.1    | 0.11   | 42.86  | 0.003 |
| E809505 | Rock                  | 8.24  | 6.63  | 5.28   | 2.69   | 343.7  | 0.4   | 2.32   | 2.47  | 2.53  | 25300 | 0.149 | 1431.6 | 0.32   | 0.17   | 36.85  | 0.003 |
| E809506 | Rock                  | 6.46  | 8.05  | 5.14   | 6.36   | 269.8  | 0.37  | 1.68   | 1.82  | 1.78  | 17800 | 0.053 | 554.8  | 0.11   | 4.52   | 17.88  | 0.003 |
| E809507 | Rock                  | 10.74 | 8.99  | 7.5    | 1.11   | 543    | 0.6   | 4.98   | 2     | 1.86  | 18600 | 1.108 | 2000   | 2.39   | 0.33   | 34.73  | 0.003 |
| E809508 | Rock                  | 12.64 | 0.42  | 5.42   | 0.1    | 43.9   | 0.34  | 1.63   | 0.26  | 0.23  | 2300  | 0.016 | 150.8  | 0.03   | 2.14   | 1.08   | BDL   |
| E809509 | Rock                  | 8.01  | 8.04  | 2.7    | 0.51   | 302.1  | 0.2   | 1.47   | 5.9   | 5.94  | 59400 | 0.019 | 203.7  | 0.04   | 0.17   | 5.27   | 0.003 |
| E809510 | Rock                  | 7.11  | 8.73  | 1      | 0.37   | 452.1  | 0.29  | 0.45   | 8.52  | 8.35  | 83500 | 0.003 | 25.5   | 0.01   | 1.63   | 4.01   | 0.003 |
| E809511 | Rock                  | 9.9   | 9.32  | 1.76   | 0.27   | 446.6  | 0.2   | 0.28   | 8.36  | 8.24  | 82400 | 0.027 | 262    | 0.06   | 0.15   | 5.03   | 0.003 |
| E809512 | Rock                  | 9.38  | 6.96  | 26.12  | 0.83   | 399.7  | 0.68  | 0.61   | 1.68  | 1.55  | 15500 | 1.005 | 2000   | 2.16   | 2.1    | 31.44  | 0.001 |
| E809513 | Rock                  | 14.47 | 4.64  | 35.96  | 0.28   | 91.6   | 0.42  | 0.53   | 0.38  | 0.33  | 3300  | 0.573 | 2000   | 1.23   | 0.28   | 11.92  | 0.002 |
| E809514 | Rock                  | 9.7   | 6.66  | 4.19   | 0.62   | 309.8  | 0.24  | 1.31   | 5.35  | 5.49  | 54900 | 0.024 | 241.1  | 0.05   | 0.97   | 60.15  | 0.003 |
| E809515 | Rock                  | 4.61  | 6.68  | 3.31   | 34.36  | 12     | 0.57  | 1.45   | 2.54  | 2.63  | 26300 | 0.001 | 19.2   | 0.00   | 0.27   | 82.27  | 0.004 |
| E809516 | Rock                  | 5.63  | 4.72  | 0.79   | 1.97   | 8.5    | 0.54  | 1.27   | 2.4   | 2.35  | 23500 | BDL   | 15.8   | BDL    | 2.01   | 33.66  | 0.001 |
| E809517 | Rock                  | 9.4   | 6.95  | 19.36  | 7.17   | 10.3   | 0.47  | 1.11   | 3.22  | 3.4   | 34000 | BDL   | 14.2   | BDL    | 0.19   | 70.3   | 0.001 |
| E809518 | Rock                  | 10.95 | 9.36  | 6.38   | 0.9    | 135.5  | 0.57  | 3.16   | 0.95  | 0.95  | 9500  | 0.065 | 690.4  | 0.14   | 2.97   | 50.18  | 0.002 |
| E809519 | Rock                  | 7.76  | 7.73  | 2.28   | 0.67   | 182.6  | 0.78  | 1.25   | 1.19  | 1.19  | 11900 | 0.39  | 2000   | 0.84   | 0.24   | 65.06  | 0.002 |
| E809520 | Rock                  | 10.91 | 7.96  | 20.14  | 2.82   | 68.9   | 0.34  | 2.73   | 0.43  | 0.44  | 4400  | 0.007 | 77.3   | 0.02   | 0.76   | 51.06  | 0.002 |



|         | Method                | WGHT  | PF370 | MA250   | MA250  | MA250  | PF370 | MA250  | PF370 | MA250 |          | PF370 | MA250   |        | MA250  | MA250  | MA250 |
|---------|-----------------------|-------|-------|---------|--------|--------|-------|--------|-------|-------|----------|-------|---------|--------|--------|--------|-------|
|         | lower detection limit | 0.01  | 0.01  | 0.04    | 0.02   | 0.1    | 0.05  | 0.02   | 0.01  | 0.01  | Calc     | 0.001 | 0.1     | Calc   | 0.05   | 0.04   | 0.001 |
| Sample  | Туре                  | Wt_kg | AI_%  | Bi_PPM  | Ce_PPM | Cs_PPM | Fe_%  | Hf_PPM | К_%   | К_%   | К_РРМ    | Li_%  | Li_PPM  | Li20_% | Mo_PPM | Nb_PPM | P_%   |
| E809521 | Rock                  | 10.18 | 8.06  | 8.38    | 7.67   | 262.9  | 0.49  | 0.97   | 0.71  | 0.73  | 7300     | 0.04  | 437.1   | 0.09   | 0.21   | 47.48  | 0.003 |
| E809522 | Rock                  | 8.26  | 8.02  | 68.97   | 6.22   | 221.1  | 0.45  | 1.52   | 0.94  | 0.98  | 9800     | 0.041 | 428.9   | 0.09   | 1.44   | 46.36  | 0.005 |
| E809523 | Rock                  | 11.05 | 6.72  | 4000    | 81.03  | 47.1   | 0.3   | 1.73   | 0.28  | 0.28  | 2800     | 0.508 | 2000    | 1.09   | 0.26   | 5.79   | 0.008 |
| E809526 | Rock                  | 8.46  | 6.62  | 39.29   | 2.29   | 314.1  | 0.45  | 1.84   | 0.56  | 0.61  | 6100     | 0.061 | 632.7   | 0.13   | 0.22   | 25.6   | 0.002 |
| E809527 | Rock                  | 11.09 | 6.65  | 4.43    | 1.59   | 343.2  | 0.59  | 1.24   | 3.59  | 3.78  | 37800    | 0.029 | 281.6   | 0.06   | 1.89   | 24.69  | 0.002 |
| E809528 | Rock                  | 12.63 | 9.11  | 3.52    | 0.36   | 271.1  | 0.26  | 0.09   | 9.59  | 9.61  | 96100    | 0.003 | 31.7    | 0.01   | 0.18   | 1.15   | 0.003 |
| E809529 | Rock                  | 12.04 | 6.64  | 0.89    | 1.48   | 121.3  | 0.4   | 0.37   | 6.01  | 6.19  | 61900    | 0.008 | 78.1    | 0.02   | 2.71   | 3.32   | 0.002 |
| E809530 | Rock                  | 8.54  | 7.95  | 1.1     | 2.63   | 161.9  | 0.23  | 0.41   | 7.78  | 7.92  | 79200    | 0.003 | 32.2    | 0.01   | 0.13   | 3.29   | 0.003 |
|         | Min                   | 4.61  | 0.42  | 0.79    | 0.1    | 8.5    | 0.2   | 0.09   | 0.26  | 0.23  | 2300     | 0.001 | 14.2    | 0.00   | 0.11   | 1.08   | 0.001 |
|         | Max                   | 17.57 | 9.36  | 4000    | 81.03  | 1284.3 | 0.78  | 4.98   | 9.59  | 9.61  | 96100    | 1.108 | 2000    | 2.39   | 4.52   | 82.27  | 0.008 |
|         | Mean                  | 9.42  | 6.74  | 6.46    | 1.46   | 176.31 | 0.38  | 0.99   | 2.29  | 2.27  | 22728.50 | 0.04  | 270.67  | 0.10   | 0.53   | 14.40  | 0.00  |
|         | S.D.                  | 2.67  | 1.83  | 754.06  | 16.07  | 264.18 | 0.15  | 1.03   | 3.15  | 3.12  | 31179.54 | 0.30  | 787.49  | 0.66   | 1.12   | 24.48  | 0.00  |
|         | P25                   | 8.26  | 6.66  | 2.60    | 0.54   | 113.88 | 0.29  | 0.51   | 0.95  | 0.97  | 9725.00  | 0.01  | 77.90   | 0.03   | 0.20   | 4.78   | 0.00  |
|         | P50                   | 9.55  | 7.84  | 5.21    | 1.30   | 270.45 | 0.39  | 1.26   | 2.51  | 2.58  | 25800.00 | 0.04  | 355.25  | 0.09   | 0.31   | 25.15  | 0.00  |
|         | P75                   | 10.98 | 8.32  | 11.13   | 2.72   | 400.85 | 0.50  | 1.64   | 6.21  | 6.27  | 62725.00 | 0.17  | 1478.35 | 0.37   | 1.70   | 46.64  | 0.00  |
|         | P97.5                 | 15.48 | 9.33  | 1346.55 | 49.53  | 898.67 | 0.71  | 3.75   | 9.20  | 9.12  | 91172.50 | 1.04  | 2000.00 | 2.25   | 3.47   | 74.19  | 0.01  |
|         | Contrast (P97.5/P50)  | 1.62  | 1.19  | 258.46  | 38.25  | 3.32   | 1.85  | 2.98   | 3.67  | 3.53  | 3.53     | 25.77 | 5.63    | 24.96  | 11.39  | 2.95   | 2.02  |
|         | Contrast (MAX/P97.5)  | 1.14  | 1.00  | 2.97    | 1.64   | 1.43   | 1.09  | 1.33   | 1.04  | 1.05  | 1.05     | 1.06  | 1.00    | 1.06   | 1.30   | 1.11   | 1.32  |

>=2,000 Li ppm means results were limited by the upper limit for the MA250 analysis method.



|         | Method                      | MA250  | PF370 | MA250  | MA250  |            | PF370 | MA250 | MA250 | MA250 | MA250  |        |       |       |
|---------|-----------------------------|--------|-------|--------|--------|------------|-------|-------|-------|-------|--------|--------|-------|-------|
|         | lower<br>detection<br>limit | 0.1    | 0.005 | 0.1    | 0.1    | Calculated | 0.01  | 0.001 | 0.1   | 0.1   | 0.2    |        |       |       |
| Sample  | Туре                        | Rb_PPM | Sn_%  | Sn_PPM | Ta_PPM | Ta2O5 PPM  | Ti_%  | Ti_%  | U_PPM | W_PPM | Zr_PPM | K/Rb   | Nb/Ta | Zr/Hf |
| E809504 | Rock                        | 2000   | BDL   | 2.4    | 8      | 9.77       | BDL   | 0.002 | 0.3   | 0.2   | 1.2    | 44.40  | 0.18  | 3.75  |
| E809501 | Rock                        | 2000   | BDL   | 1.8    | 3.7    | 4.52       | BDL   | 0.002 | 0.1   | 0.2   | 4.4    | 38.85  | 0.84  | 3.67  |
| E809502 | Rock                        | 2000   | BDL   | 7      | 56.9   | 69.48      | BDL   | 0.002 | 0.6   | 0.3   | 1.3    | 32.60  | 0.13  | 3.51  |
| E809503 | Rock                        | 1808.4 | 0.006 | 23.8   | 67.3   | 82.18      | BDL   | 0.007 | 0.8   | 1.3   | 5.7    | 23.56  | 0.64  | 4.45  |
| E809505 | Rock                        | 1074   | 0.015 | 15.5   | 33.6   | 41.03      | BDL   | 0.006 | 0.4   | 1     | 9.7    | 23.56  | 1.10  | 4.18  |
| E809506 | Rock                        | 804.3  | BDL   | 2.9    | 38.1   | 46.52      | BDL   | 0.001 | 0.8   | 0.4   | 5.8    | 22.13  | 0.47  | 3.45  |
| E809507 | Rock                        | 1058.5 | BDL   | 15.7   | 177.8  | 217.11     | BDL   | 0.004 | 3.3   | 0.9   | 8.8    | 17.57  | 0.20  | 1.77  |
| E809508 | Rock                        | 101.6  | BDL   | 3.7    | 1      | 1.22       | BDL   | BDL   | 0.5   | 0.1   | 1.1    | 22.64  | 1.08  | 0.67  |
| E809509 | Rock                        | 2000   | BDL   | 1.2    | 54.8   | 66.92      | BDL   | 0.001 | 0.2   | 0.2   | 2.6    | 29.70  | 0.10  | 1.77  |
| E809510 | Rock                        | 2000   | 0.005 | 1.2    | 9.2    | 11.23      | BDL   | BDL   | 0.2   | 0.2   | 1.3    | 41.75  | 0.44  | 2.89  |
| E809511 | Rock                        | 2000   | BDL   | 0.8    | 12.7   | 15.51      | BDL   | BDL   | 0.1   | 0.1   | 1      | 41.20  | 0.40  | 3.57  |
| E809512 | Rock                        | 476.6  | 0.008 | 39.7   | 36.6   | 44.69      | BDL   | 0.011 | 0.8   | 1.1   | 2.2    | 32.52  | 0.86  | 3.61  |
| E809513 | Rock                        | 189.1  | 0.007 | 18     | 14.1   | 17.22      | BDL   | 0.005 | 0.3   | 0.5   | 1.7    | 17.45  | 0.85  | 3.21  |
| E809514 | Rock                        | 2000   | BDL   | 5.7    | 162.7  | 198.67     | BDL   | 0.003 | 1.5   | 1     | 3.8    | 27.45  | 0.37  | 2.90  |
| E809515 | Rock                        | 181.1  | BDL   | 3.1    | 51.4   | 62.76      | 0.09  | 0.09  | 14.7  | 1     | 29.3   | 145.22 | 1.60  | 20.21 |
| E809516 | Rock                        | 164.9  | BDL   | 1.4    | 9.9    | 12.09      | 0.01  | 0.013 | 10.2  | 0.5   | 21.4   | 142.51 | 3.40  | 16.85 |
| E809517 | Rock                        | 246.6  | BDL   | 1.5    | 29.5   | 36.02      | 0.02  | 0.024 | 21.3  | 0.9   | 17.4   | 137.88 | 2.38  | 15.68 |
| E809518 | Rock                        | 540.8  | BDL   | 22.4   | 58.5   | 71.43      | BDL   | 0.012 | 1.2   | 1.7   | 13.4   | 17.57  | 0.86  | 4.24  |
| E809519 | Rock                        | 759.5  | BDL   | 34.8   | 69.3   | 84.62      | 0.01  | 0.016 | 0.7   | 2.7   | 4.9    | 15.67  | 0.94  | 3.92  |
| E809520 | Rock                        | 185.4  | 0.007 | 8.8    | 77.5   | 94.64      | BDL   | 0.006 | 2     | 0.9   | 10.2   | 23.73  | 0.66  | 3.74  |
| E809521 | Rock                        | 435.8  | 0.005 | 8.6    | 23.2   | 28.33      | 0.02  | 0.019 | 3.9   | 1.7   | 8      | 16.75  | 2.05  | 8.25  |
| E809522 | Rock                        | 620    | BDL   | 7.4    | 30.3   | 37.00      | BDL   | 0.01  | 5.2   | 1.7   | 11.4   | 15.81  | 1.53  | 7.50  |
| E809523 | Rock                        | 108.2  | 0.006 | 3.7    | 15.4   | 18.80      | BDL   | 0.001 | 0.8   | 0.2   | 12.4   | 25.88  | 0.38  | 7.17  |



|         | Method                      | MA250   | PF370 | MA250  | MA250  |            | PF370 | MA250 | MA250 | MA250 | MA250  |        |       |       |
|---------|-----------------------------|---------|-------|--------|--------|------------|-------|-------|-------|-------|--------|--------|-------|-------|
|         | lower<br>detection<br>limit | 0.1     | 0.005 | 0.1    | 0.1    | Calculated | 0.01  | 0.001 | 0.1   | 0.1   | 0.2    |        |       |       |
| Sample  | Туре                        | Rb_PPM  | Sn_%  | Sn_PPM | Ta_PPM | Ta2O5 PPM  | Ti_%  | Ti_%  | U_PPM | W_PPM | Zr_PPM | K/Rb   | Nb/Ta | Zr/Hf |
| E809526 | Rock                        | 508.6   | BDL   | 6.5    | 12     | 14.65      | 0.01  | 0.016 | 1.7   | 1.8   | 16.2   | 11.99  | 2.13  | 8.80  |
| E809527 | Rock                        | 1247.9  | BDL   | 13     | 17.4   | 21.25      | 0.02  | 0.019 | 1.2   | 0.9   | 7.5    | 30.29  | 1.42  | 6.05  |
| E809528 | Rock                        | 2000    | BDL   | 0.9    | 1      | 1.22       | BDL   | 0.001 | 0.1   | 0.2   | 0.7    | 48.05  | 1.15  | 7.78  |
| E809529 | Rock                        | 1158.3  | BDL   | 1.3    | 2.9    | 3.54       | BDL   | 0.001 | 0.4   | 0.2   | 2.8    | 53.44  | 1.14  | 7.57  |
| E809530 | Rock                        | 1447.9  | BDL   | 1.4    | 2.9    | 3.54       | BDL   | 0.002 | 0.3   | 0.3   | 2.7    | 54.70  | 1.13  | 6.59  |
|         | Min                         | 101.6   | 0.005 | 0.8    | 1      | 1.2211     | 0.01  | 0.001 | 0.1   | 0.1   | 0.7    | 11.99  | 0.10  | 0.67  |
|         | Max                         | 2000    | 0.015 | 39.7   | 177.8  | 217.11158  | 0.09  | 0.09  | 21.3  | 2.7   | 29.3   | 145.22 | 3.40  | 20.21 |
|         | Mean                        | 709.71  | 0.01  | 4.81   | 19.46  | 23.76      | 0.02  | 0.01  | 0.87  | 0.54  | 4.67   | 32.03  | 0.74  | 4.71  |
|         | S.D.                        | 746.58  | 0.00  | 10.41  | 43.81  | 53.49      | 0.03  | 0.02  | 4.91  | 0.66  | 7.05   | 37.37  | 0.77  | 4.63  |
|         | P25                         | 388.50  | 0.01  | 1.48   | 9.73   | 11.88      | 0.01  | 0.00  | 0.30  | 0.20  | 2.08   | 20.99  | 0.43  | 3.50  |
|         | P50                         | 931.40  | 0.01  | 4.70   | 26.35  | 32.18      | 0.02  | 0.01  | 0.80  | 0.70  | 5.30   | 28.58  | 0.86  | 4.05  |
|         | P75                         | 2000.00 | 0.01  | 13.63  | 55.33  | 67.56      | 0.02  | 0.01  | 1.78  | 1.03  | 10.50  | 42.41  | 1.22  | 7.52  |
|         | P97.5                       | 2000.00 | 0.01  | 36.39  | 167.61 | 204.67     | 0.08  | 0.05  | 16.85 | 2.09  | 23.97  | 143.39 | 2.71  | 17.94 |
|         | Contrast<br>(P97.5/P50)     | 2.15    | 2.12  | 7.74   | 6.36   | 6.36       | 3.98  | 8.40  | 21.06 | 2.99  | 4.52   | 5.02   | 3.16  | 4.43  |
|         | Contrast<br>(MAX/P97.5)     | 1.00    | 1.09  | 1.09   | 1.06   | 1.06       | 1.13  | 1.79  | 1.26  | 1.29  | 1.22   | 1.01   | 1.25  | 1.13  |

>=2,000 Li ppm means results were limited by the upper limit for the MA250 analysis method.

>=2,000 Rb ppm means results were limited by the upper limit for the MA250 analysis method.

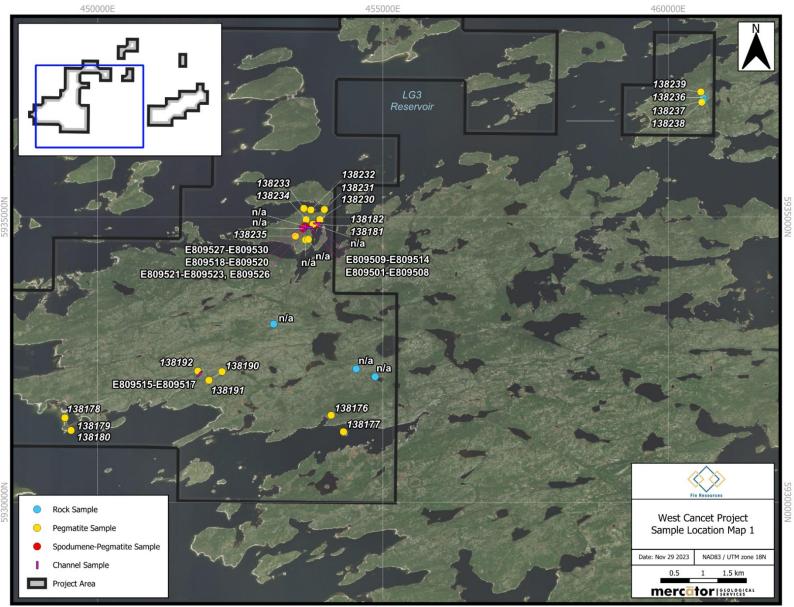


## Cancet West Regional Rock Chip Samples

|              | Method                | WGHT   | PF370 | MA250  | MA250  | MA250  | PF370 | MA250  | PF370 | MA250 |            | PF370 | MA250  |            | MA250  | MA250  |
|--------------|-----------------------|--------|-------|--------|--------|--------|-------|--------|-------|-------|------------|-------|--------|------------|--------|--------|
|              | lower detection limit | 0.01   | 0.01  | 0.04   | 0.02   | 0.1    | 0.05  | 0.02   | 0.01  | 0.01  | Calculated | 0.001 | 0.1    | Calculated | 0.05   | 0.04   |
| Sample       | Туре                  | Wgt_KG | AI_%  | Bi_PPM | Ce_PPM | Cs_PPM | Fe_%  | Hf_PPM | К_%   | К_%   | K_PPM      | Li_%  | Li_PPM | Li20 %     | Mo_PPM | Nb_PPM |
| 138230       | Rock                  | 3.31   | 7.51  | 6.8    | 22.5   | 27     | 0.66  | 8.76   | 3.04  | 3.16  | 31600      | BDL   | 16     | BDL        | 2.93   | 63.18  |
| 138231       | Rock                  | 1.35   | 7.11  | 10.05  | 6.51   | 12     | 0.5   | 1.15   | 2.99  | 3.03  | 30300      | 0.002 | 16.1   | 0.00       | 0.22   | 61.05  |
| 138232       | Rock                  | 0.72   | 9.33  | 4.92   | 1.63   | 61.1   | 0.33  | 0.2    | 10.02 | 9.99  | 99900      | BDL   | 2.5    | BDL        | 2.44   | 7.21   |
| 138233       | Rock                  | 2.31   | 6.41  | 5.03   | 5.74   | 2.1    | 0.63  | 3.86   | 0.53  | 0.52  | 5200       | 0.002 | 11.5   | 0.00       | 0.27   | 57.09  |
| 138234       | Rock                  | 2.16   | 7.17  | 2.25   | 0.91   | 89.3   | 0.23  | 0.52   | 7     | 6.87  | 68700      | 0.002 | 11.9   | 0.00       | 0.71   | 10.31  |
| 138235       | Rock                  | 2.48   | 6.87  | 5.75   | 7.05   | 4.9    | 0.58  | 1.04   | 1.12  | 1.17  | 11700      | BDL   | 7.5    | BDL        | 0.28   | 41.7   |
| 138236       | Rock                  | 5.26   | 5.16  | 0.35   | 18.83  | 3.2    | 0.86  | 3.77   | 0.36  | 0.34  | 3400       | 0.004 | 43.3   | 0.01       | 3.21   | 14.57  |
| 138237       | Rock                  | 1.34   | 5.88  | 0.45   | 6.35   | 7.8    | 0.52  | 2.6    | 1.99  | 1.88  | 18800      | 0.005 | 51.9   | 0.01       | 0.2    | 3.88   |
| 138238       | Rock                  | 2.64   | 7.27  | 0.4    | 3.64   | 33.8   | 0.63  | 1.81   | 5.66  | 5.86  | 58600      | 0.005 | 49.9   | 0.01       | 1.63   | 6.63   |
| 138239       | Rock                  | 0.66   | 6.47  | 0.5    | 10.83  | 6      | 0.69  | 2.75   | 2.42  | 2.45  | 24500      | 0.004 | 41.8   | 0.01       | 0.29   | 2.97   |
| Min          |                       | 0.66   | 5.16  | 0.35   | 0.91   | 2.10   | 0.23  | 0.20   | 0.36  | 0.34  | 3400.00    | 0.00  | 2.50   | 0.00       | 0.20   | 2.97   |
| Max          |                       | 5.26   | 9.33  | 10.05  | 22.50  | 89.30  | 0.86  | 8.76   | 10.02 | 9.99  | 99900.00   | 0.01  | 51.90  | 0.01       | 3.21   | 63.18  |
| Mean         |                       | 1.86   | 6.84  | 1.92   | 5.78   | 12.49  | 0.53  | 1.70   | 2.27  | 2.27  | 22722.40   | 0.00  | 17.75  | 0.01       | 0.69   | 15.42  |
| S.D.         |                       | 1.37   | 1.11  | 3.37   | 7.11   | 29.34  | 0.18  | 2.50   | 3.12  | 3.12  | 31162.23   | 0.00  | 19.11  | 0.00       | 1.22   | 25.69  |
| P25          |                       | 1.34   | 6.43  | 0.46   | 4.17   | 5.18   | 0.51  | 1.07   | 1.34  | 1.35  | 13475.00   | 0.00  | 11.60  | 0.00       | 0.27   | 6.78   |
| P50          |                       | 2.24   | 6.99  | 3.59   | 6.43   | 9.90   | 0.61  | 2.21   | 2.71  | 2.74  | 27400.00   | 0.00  | 16.05  | 0.01       | 0.50   | 12.44  |
| P75          |                       | 2.60   | 7.25  | 5.57   | 9.89   | 32.10  | 0.65  | 3.52   | 5.01  | 5.19  | 51850.00   | 0.00  | 42.93  | 0.01       | 2.24   | 53.24  |
| P97.5        |                       | 4.82   | 8.92  | 9.32   | 21.67  | 82.96  | 0.82  | 7.66   | 9.34  | 9.29  | 92880.00   | 0.01  | 51.45  | 0.01       | 3.15   | 62.70  |
| Contrast (PS | 97.5/P50)             | 2.16   | 1.28  | 2.60   | 3.37   | 8.38   | 1.36  | 3.47   | 3.45  | 3.39  | 3.39       | 1.25  | 3.21   | 1.25       | 6.29   | 5.04   |
| Contrast (M  | IAX/P97.5)            | 1.09   | 1.05  | 1.08   | 1.04   | 1.08   | 1.05  | 1.14   | 1.07  | 1.08  | 1.08       | 1.00  | 1.01   | 1.00       | 1.02   | 1.01   |



|              | Method                | MA250 | MA250   | PF370 | MA250  | MA250  |            | PF370 | MA250 | MA250 | MA250 | MA250  |        |       |       |
|--------------|-----------------------|-------|---------|-------|--------|--------|------------|-------|-------|-------|-------|--------|--------|-------|-------|
|              | lower detection limit | 0.001 | 0.1     | 0.005 | 0.1    | 0.1    | Calculated | 0.01  | 0.001 | 0.1   | 0.1   | 0.2    |        |       |       |
| Sample       | Туре                  | P_%   | Rb_PPM  | Sn_%  | Sn_PPM | Ta_PPM | Ta2O5 PPM  | Ti_%  | Ti_%  | U_PPM | W_PPM | Zr_PPM | K/Rb   | Nb/Ta | Zr/Hf |
| 138230       | Rock                  | 0.004 | 410.3   | BDL   | 3.1    | 37.5   | 45.79      | 0.02  | 0.019 | 6.7   | 0.7   | 89.5   | 77.02  | 1.68  | 10.22 |
| 138231       | Rock                  | 0.005 | 281.7   | BDL   | 1.2    | 34.4   | 42.01      | 0.02  | 0.022 | 8.2   | 0.8   | 16.1   | 107.56 | 1.77  | 14.00 |
| 138232       | Rock                  | 0.001 | 1042.3  | 0.006 | 0.4    | 5.4    | 6.59       | BDL   | 0.002 | 1     | 0.3   | 1.6    | 95.85  | 1.34  | 8.00  |
| 138233       | Rock                  | 0.002 | 32.9    | BDL   | 2      | 21.8   | 26.62      | 0.03  | 0.03  | 11.2  | 0.5   | 70.2   | 158.05 | 2.62  | 18.19 |
| 138234       | Rock                  | 0.001 | 858.8   | BDL   | 0.3    | 7.1    | 8.67       | BDL   | 0.002 | 2     | 0.2   | 5.8    | 80.00  | 1.45  | 11.15 |
| 138235       | Rock                  | 0.001 | 104.6   | BDL   | 1.4    | 17.1   | 20.88      | 0.03  | 0.034 | 6.1   | 1     | 20.5   | 111.85 | 2.44  | 19.71 |
| 138236       | Rock                  | 0.003 | 24      | BDL   | 1.3    | 6      | 7.33       | 0.02  | 0.018 | 12    | 0.5   | 56.1   | 141.67 | 2.43  | 14.88 |
| 138237       | Rock                  | 0.002 | 112.5   | BDL   | 0.8    | 1.2    | 1.47       | BDL   | 0.01  | 8.4   | 0.4   | 52.3   | 167.11 | 3.23  | 20.12 |
| 138238       | Rock                  | 0.003 | 373     | BDL   | 1.3    | 1.5    | 1.83       | 0.01  | 0.014 | 5     | 0.4   | 31.7   | 157.10 | 4.42  | 17.51 |
| 138239       | Rock                  | 0.003 | 139.7   | BDL   | 1.1    | 0.5    | 0.61       | 0.02  | 0.016 | 4.7   | 0.3   | 43.4   | 175.38 | 5.94  | 15.78 |
| Min          |                       | 0.00  | 24.00   | 0.01  | 0.30   | 0.50   | 0.61       | 0.01  | 0.00  | 1.00  | 0.20  | 1.60   | 77.02  | 1.34  | 8.00  |
| Max          |                       | 0.01  | 1042.30 | 0.01  | 3.10   | 37.50  | 45.79      | 0.03  | 0.03  | 12.00 | 1.00  | 89.50  | 175.38 | 5.94  | 20.12 |
| Mean         |                       | 0.00  | 186.20  | 0.01  | 1.06   | 6.31   | 7.70       | 0.02  | 0.01  | 5.31  | 0.46  | 24.49  | 122.03 | 2.44  | 14.38 |
| S.D.         |                       | 0.00  | 351.70  | NA    | 0.81   | 13.83  | 16.89      | 0.01  | 0.01  | 3.57  | 0.25  | 28.74  | 37.00  | 1.46  | 4.12  |
| P25          |                       | 0.00  | 106.58  | 0.01  | 0.88   | 2.48   | 3.02       | 0.02  | 0.01  | 4.78  | 0.33  | 17.20  | 98.77  | 1.71  | 11.87 |
| P50          |                       | 0.00  | 210.70  | 0.01  | 1.25   | 6.55   | 8.00       | 0.02  | 0.02  | 6.40  | 0.45  | 37.55  | 126.76 | 2.43  | 15.33 |
| P75          |                       | 0.00  | 400.98  | 0.01  | 1.38   | 20.63  | 25.19      | 0.03  | 0.02  | 8.35  | 0.65  | 55.15  | 157.82 | 3.08  | 18.02 |
| P97.5        |                       | 0.00  | 1001.01 | 0.01  | 2.85   | 36.80  | 44.94      | 0.03  | 0.03  | 11.82 | 0.96  | 85.16  | 173.52 | 5.60  | 20.02 |
| Contrast (P9 | 7.5/P50)              | 1.91  | 4.75    | 1.00  | 2.28   | 5.62   | 5.62       | 1.50  | 1.95  | 1.85  | 2.12  | 2.27   | 1.37   | 2.30  | 1.31  |
| Contrast (M  | AX/P97.5)             | 1.05  | 1.04    | 1.00  | 1.09   | 1.02   | 1.02       | 1.00  | 1.03  | 1.02  | 1.05  | 1.05   | 1.01   | 1.06  | 1.00  |




| Stations     | UTM<br>Zone | Easting | Northing | Lithology                           | Sample<br>Numbers  | Grain Size<br>(cm) | Mica<br>colour             | Spodumen<br>e Present | Lepidolite | Tourmaline<br>Present | Beryl<br>Present | Garnet<br>Present | Magnetite<br>Present | Additional Notes                                                                               |
|--------------|-------------|---------|----------|-------------------------------------|--------------------|--------------------|----------------------------|-----------------------|------------|-----------------------|------------------|-------------------|----------------------|------------------------------------------------------------------------------------------------|
| Grab Samples |             |         |          |                                     |                    |                    |                            |                       |            |                       |                  |                   |                      |                                                                                                |
| 23OP239      | 18N         | 454093  | 5931525  | Pegmatite                           | 138176             | <15 cm             | Black                      |                       |            |                       |                  |                   |                      | Graphic texture                                                                                |
| 23OP240      | 18N         | 454308  | 5931235  | Pegmatite                           | 138177             | <30+ cm            | Black                      |                       |            |                       |                  |                   | Yes                  |                                                                                                |
| 230P241      | 18N         | 449426  | 5931480  | Pegmatite                           | 138178             | <100 cm            | Black                      |                       |            |                       |                  | Yes               | Yes                  | Graphic texture; perthitic<br>feldspar                                                         |
| 23OP242      | 18N         | 449534  | 5931260  | Pegmatite                           | 138179 &<br>138180 | <15cm              | Black                      |                       |            |                       |                  |                   |                      | Same body as 23OP241                                                                           |
| 230P243      | 18N         | 453828  | 5934864  | Spodumene Pegmatite                 | 138181 &<br>138182 | <30+               | White                      | Yes                   | Trace      | Yes                   | Yes              | Yes               |                      | Spodumene represents 20<br>30 modal % of quartz<br>pockets in outcrop; Zn-<br>silicate present |
| 23OP258      | 18N         | 466112  | 5932040  | Pegmatite Vein in<br>Amphibolite    | 138187             | <30 cm             | Black                      |                       |            |                       |                  | Yes               | Yes                  | Purple quartz                                                                                  |
| 230P259      | 18N         | 465930  | 5932834  | Pegmatite Vein in tectonic breccia  | 138188             | <15 cm             | Black                      |                       |            |                       |                  | Yes               |                      | Graphic                                                                                        |
| 230P261      | 18N         | 463059  | 5931046  | Pegmatite Vein in<br>Diorite        | 138189             | <20 cm             | Black                      |                       |            |                       |                  |                   |                      | Perthitic feldspar                                                                             |
| 230P262      | 18N         | 452180  | 5932290  | Pegmatite                           | 138190             | <20+ cm            | White/g<br>reen &<br>black |                       |            |                       |                  |                   | Yes                  | Graphic texture; perthiti<br>feldspar                                                          |
| 138191       | 18N         | 451951  | 5932137  | Pegmatite                           | 138191             | <20+ cm            | White/g<br>reen &<br>black |                       |            |                       |                  |                   | Yes                  | Same ridge as 13890                                                                            |
| 230P263      | 18N         | 451758  | 5932298  | Pegmatite                           | 138192             | <25 cm             | White                      |                       |            |                       |                  |                   |                      | Graphic                                                                                        |
| 23CM029      | 18N         | 453895  | 5934954  | Pegmatite dyke;<br>Amphibolite host | 138230             | <6cm               |                            |                       |            |                       |                  |                   |                      | Extent: 4m wide dyke                                                                           |
| 23CM030      | 18N         | 453973  | 5935130  | Pegmatite dyke;<br>Amphibolite host | 138231             | <4cm               |                            |                       |            |                       | ?                | Yes               | Yes                  | Extent: 100mx50m dykes<br>quartz lenses                                                        |
| 23CM031      | 18N         | 453737  | 5935123  | Pegmatite vein in amphibolite       | 138232             | <4cm               |                            |                       |            |                       | ?                | Yes               | Yes                  | 200m west of 23CM030;<br>same mineralogy                                                       |
| 23CM032      | 18N         | 453614  | 5935150  | Pegmatite vein in<br>amphibolite    | 138233             | <4cm               |                            |                       |            |                       |                  | Yes               |                      | Extent: 2m wide dyke                                                                           |

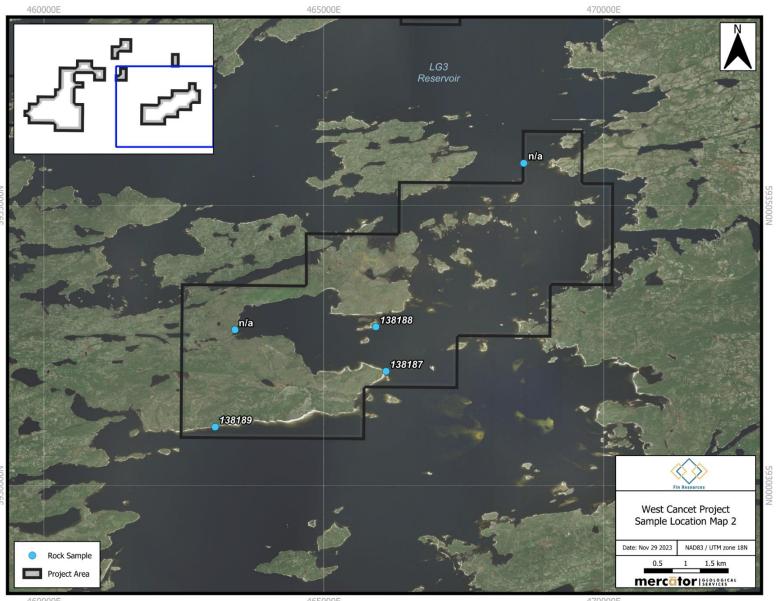


| 23CM033       | 18N | 453654 | 5934954 | Pegmatite vein in<br>amphibolite | 138234                          | <10cm  |       |     |       |     |     | Yes | Extent: 30m pegmatite<br>outcrop                                                        |
|---------------|-----|--------|---------|----------------------------------|---------------------------------|--------|-------|-----|-------|-----|-----|-----|-----------------------------------------------------------------------------------------|
| 23CM036       | 18N | 453467 | 5934663 | Pegmatite vein in<br>amphibolite | 138235                          | <10 cm |       |     |       |     |     |     | Extent: 25mx4m dyke;<br>Felspar + quartz only                                           |
| 23CM039       | 18N | 460614 | 5937089 | Pegmatite vein in granitoid      | 138236                          | <20cm  | Black |     |       |     |     | Yes | Ridge; 1 m pegmatite veins<br>in granitoid                                              |
| 23CM040       | 18N | 460616 | 5937032 | Pegmatite vein in granitoid      | 138237                          | <20cm  |       |     |       |     |     |     | Ridge;3 m pink pegmatite<br>dykes in granitoid                                          |
| 23CM041       | 18N | 460588 | 5937011 | Pegmatite vein in granitoid      | 138238                          | <20cm  | Green |     |       |     |     |     | Ridge;3 m pink pegmatite<br>dykes in granitoid                                          |
| 23CM042       | 18N | 460573 | 5937191 | Pegmatite                        | 138239                          | <20cm  | Black |     |       |     |     |     | Extent: 15mx10mx6m<br>Quartz pockets                                                    |
| Channel Sampl | les | •      |         |                                  |                                 | •      |       |     | 1     |     |     |     |                                                                                         |
| 23WB001       | 18N | 453756 | 5934789 | Spodumene bearing pegmatite      | E809501-<br>E809508             | <30+cm | White | Yes | Trace | Yes | Yes | Yes | Similar to 23OP243                                                                      |
| 23WB002       | 18N | 453849 | 5934887 | Pegmatite                        | E809509-<br>E809514             | <30+cm | White | Yes | Trace | Yes | Yes | Yes | Same outcrop as 230P243<br>Extent: 70mx10m                                              |
| 23WB003       | 18N | 453698 | 5934818 | Spodumene bearing pegmatite      | E809521-<br>E809523,<br>E809526 | <30+cm |       | Yes |       |     |     |     |                                                                                         |
| 23WB004       | 18N | 453640 | 5934838 | Spodumene bearing<br>pegmatite   | E809518-<br>E809520             | <30+cm | White | Yes |       | Yes | Yes |     | Extent: 4mx3m; quartz<br>pockets up to 50cm                                             |
| 23WB005       | 18N | 453591 | 5934800 | Spodumene bearing pegmatite      | E809527-<br>E809530             | <30+cm | White | Yes |       |     |     |     | Outcrop 23OP035 Extent:<br>60mx15cm zipper micas up<br>to 60cm and quartz<br>pockets    |
| 23Merc001     | 18N | 451786 | 5932247 | Pegmatite                        | E809515-<br>E809517             | <30+cm | White |     |       |     |     |     | Same as Outcrop 230P263<br>Extent: >100m ridges<br>graphic texture and purple<br>quartz |










450000E

455000E

460000E





460000E



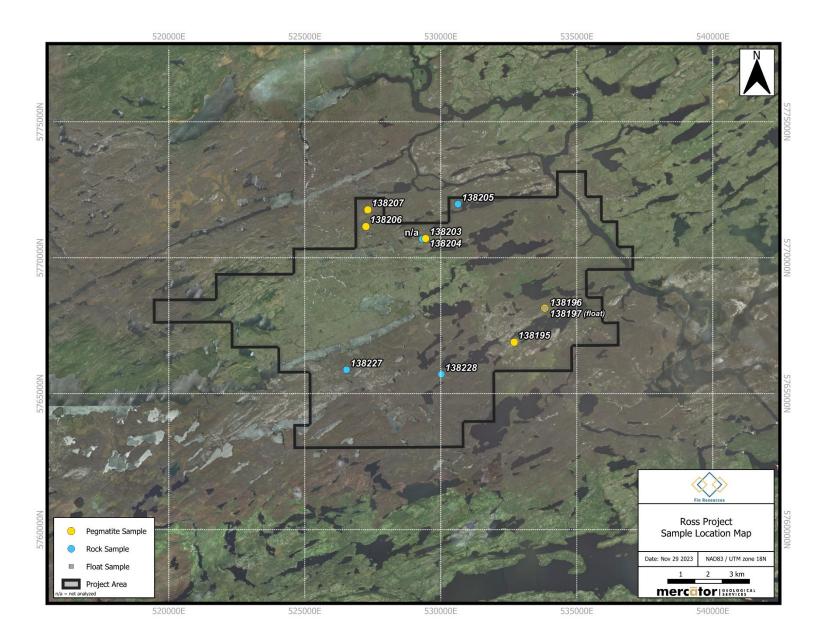
# **Appendix 2:**

# **Rock Chip Assays and Coordinates/Lithology at Ross**

|             | Method       | WGHT   | PF370 | MA250  | MA250  | PF370 | MA250  | PF370 | MA250 |            | PF370 | MA250  |            | MA250  | MA250  |
|-------------|--------------|--------|-------|--------|--------|-------|--------|-------|-------|------------|-------|--------|------------|--------|--------|
| lower dete  | ection limit | 0.01   | 0.01  | 0.04   | 0.1    | 0.05  | 0.02   | 0.01  | 0.01  | Calculated | 0.001 | 0.1    | Calculated | 0.05   | 0.04   |
| Sample      | Туре         | Wgt_KG | AI_%  | Bi_PPM | Cs_PPM | Fe_%  | Hf_PPM | К_%   | К_%   | К_РРМ      | Li_%  | Li_PPM | Li2O %     | Mo_PPM | Nb_PPM |
| 138195      | Rock         | 1.37   | 7.55  | BDL    | 2.8    | 1.33  | 0.70   | 7.14  | 7.68  | 76800      | 0.002 | 23.3   | 0.004      | 0.29   | 11.41  |
| 138196      | Rock         | 1.7    | 8.13  | 0.15   | 3.9    | 0.32  | 0.60   | 7.92  | 8.52  | 85200      | 0.001 | 13.4   | 0.002      | 0.06   | 0.82   |
| 138197      | Rock         | 2.39   | 6.42  | BDL    | 2.8    | 2.93  | 0.80   | 0.77  | 0.8   | 8000       | 0.001 | 7.9    | 0.002      | 0.51   | 1.09   |
| 138203      | Rock         | 2.84   | 8.18  | 19.86  | 2.2    | 1.13  | 0.48   | 5.11  | 5.46  | 54600      | 0.001 | 8.4    | 0.002      | 0.22   | 4.52   |
| 138204      | Rock         | 1.33   | 4.14  | 0.09   | 1.1    | 11.14 | 0.39   | 0.96  | 0.98  | 9800       | 0.003 | 31.4   | 0.006      | 0.61   | 24.94  |
| 138205      | Rock         | 0.79   | 5.52  | 0.05   | 1.2    | 0.55  | 0.15   | 4.98  | 5.28  | 52800      | 0.001 | 7.1    | 0.001      | 0.29   | 1.79   |
| 138206      | Rock         | 3.02   | 7.12  | 0.05   | 1.3    | 0.36  | 0.66   | 6.1   | 6.63  | 66300      | 0.002 | 18.3   | 0.004      | 0.12   | 0.84   |
| 138207      | Rock         | 1.08   | 7.12  | BDL    | 1      | 0.71  | 0.55   | 6.62  | 7.22  | 72200      | 0.001 | 5.6    | 0.001      | 0.06   | 2.29   |
| 138227      | Rock         | 0.54   | 7.19  | BDL    | 1.7    | 0.62  | 0.16   | 7     | 7.6   | 76000      | 0.001 | 3.5    | 0.001      | 0.17   | 0.59   |
| 138228      | Rock         | 0.96   | 5.99  | BDL    | 1      | 0.43  | 4.12   | 3.37  | 3.5   | 35000      | 0.001 | 11.3   | 0.002      | 0.15   | 0.72   |
| Μ           | lin          | 0.54   | 4.14  | 0.00   | 1.0    | 0.32  | 0.15   | 0.77  | 0.80  | 8000       | 0.001 | 3.50   | 0.001      | 0.06   | 0.59   |
| М           | lax          | 3.02   | 8.18  | 19.86  | 3.9    | 11.14 | 4.12   | 7.92  | 8.52  | 85200      | 0.003 | 31.40  | 0.006      | 0.61   | 24.94  |
| Me          | ean          | 1.60   | 6.74  | 2.02   | 1.9    | 1.95  | 0.86   | 5.00  | 5.37  | 53670      | 0.001 | 13.02  | 0.003      | 0.25   | 4.90   |
| S.          | .D.          | 0.87   | 1.25  | 6.27   | 1.0    | 3.32  | 1.17   | 2.53  | 2.77  | 27671      | 0.001 | 8.84   | 0.002      | 0.18   | 7.78   |
| P           | 25           | 0.99   | 6.10  | 0.00   | 1.1    | 0.46  | 0.41   | 3.77  | 3.95  | 39450      | 0.001 | 7.30   | 0.001      | 0.13   | 0.83   |
| P           | 50           | 1.35   | 7.12  | 0.03   | 1.5    | 0.67  | 0.58   | 5.61  | 6.05  | 60450      | 0.001 | 9.85   | 0.002      | 0.20   | 1.44   |
| P           | 75           | 2.22   | 7.46  | 0.08   | 2.7    | 1.28  | 0.69   | 6.91  | 7.51  | 75050      | 0.002 | 17.08  | 0.004      | 0.29   | 3.96   |
| Р9          | 7.5          | 2.98   | 8.17  | 15.43  | 3.7    | 9.29  | 3.37   | 7.74  | 8.33  | 83310      | 0.003 | 29.58  | 0.006      | 0.59   | 21.90  |
| Contrast (I | P97.5/P50)   | 2.21   | 1.15  | 617.01 | 2.44   | 13.97 | 5.87   | 1.38  | 1.38  | 1.38       | 2.78  | 3.00   | 2.78       | 3.01   | 15.21  |
| Contrast (N | MAX/P97.5)   | 1.01   | 1.00  | 1.29   | 1.07   | 1.20  | 1.22   | 1.02  | 1.02  | 1.02       | 1.08  | 1.06   | 1.08       | 1.04   | 1.14   |



|             | Method       | MA250 | MA250  | PF370 | MA250  | MA250  |            | MA250  | PF370 | MA250 | MA250 | MA250 | MA250  |        |       |       |
|-------------|--------------|-------|--------|-------|--------|--------|------------|--------|-------|-------|-------|-------|--------|--------|-------|-------|
| lower det   | ection limit | 0.001 | 0.1    | 0.005 | 0.1    | 0.1    | Calculated | 0.1    | 0.01  | 0.001 | 0.1   | 0.1   | 0.2    |        |       |       |
| Sample      | Туре         | P_%   | Rb_PPM | Sn_%  | Sn_PPM | Ta_PPM | Ta2O5 PPM  | Th_PPM | Ti_%  | Ti_%  | U_PPM | W_PPM | Zr_PPM | K/Rb   | Nb/Ta | Zr/Hf |
| 138195      | Rock         | 0.01  | 288.2  | 0.006 | 0.4    | 0.5    | 0.61       | 7.0    | 0.11  | 0.1   | 0.3   | 0.5   | 23.7   | 266.48 | 22.82 | 33.86 |
| 138196      | Rock         | 0.027 | 301.2  | 0.008 | 0.3    | 0.1    | 0.12       | 1.7    | BDL   | 0.007 | 0.7   | 0.1   | 12.5   | 282.87 | 8.20  | 20.83 |
| 138197      | Rock         | 0.009 | 26.7   | 0.005 | 1.4    | 0.2    | 0.24       | 43.1   | 0.07  | 0.062 | 1.0   | 0.2   | 22.6   | 299.63 | 5.45  | 28.25 |
| 138203      | Rock         | 0.015 | 158.7  | BDL   | 0.6    | 0.5    | 0.61       | 84.3   | 0.02  | 0.019 | 1.7   | 0.2   | 8.3    | 344.05 | 9.04  | 17.29 |
| 138204      | Rock         | 0.035 | 35.6   | 0.009 | 1.6    | 1.0    | 1.22       | 5.6    | 0.14  | 0.140 | 2.6   | 0.5   | 8.4    | 275.28 | 24.94 | 21.54 |
| 138205      | Rock         | 0.01  | 127.5  | BDL   | 0.3    | 0.1    | 0.12       | 2.7    | 0.03  | 0.033 | 1.4   | BDL   | 4.2    | 414.12 | 17.90 | 28.00 |
| 138206      | Rock         | 0.005 | 175.3  | 0.011 | 0.2    | BDL    | BDL        | 13.3   | BDL   | 0.008 | 1.4   | BDL   | 13.6   | 378.21 | -     | 20.61 |
| 138207      | Rock         | 0.007 | 184.9  | BDL   | 0.2    | BDL    | BDL        | 32.4   | 0.05  | 0.045 | 0.4   | BDL   | 22.1   | 390.48 | -     | 40.18 |
| 138227      | Rock         | 0.009 | 218.5  | 0.01  | 0.2    | BDL    | BDL        | 4.3    | 0.02  | 0.012 | 0.3   | BDL   | 5.4    | 347.83 | -     | 33.75 |
| 138228      | Rock         | 0.005 | 103.9  | 0.01  | 0.2    | BDL    | BDL        | 5.8    | BDL   | 0.002 | 1.5   | BDL   | 100.3  | 336.86 | -     | 24.34 |
| N           | 1in          | 0.005 | 26.7   | 0.000 | 0.2    | 0.0    | 0.00       | 1.7    | 0.00  | 0.002 | 0.3   | 0.0   | 4.2    | 266.48 | 5.45  | 17.29 |
| N           | 1ax          | 0.035 | 301.2  | 0.011 | 1.6    | 1.0    | 1.22       | 84.3   | 0.14  | 0.140 | 2.6   | 0.5   | 100.3  | 414.12 | 45.80 | 40.18 |
| M           | ean          | 0.013 | 162.1  | 0.006 | 0.5    | 0.3    | 0.32       | 20.0   | 0.04  | 0.043 | 1.1   | 0.2   | 22.1   | 333.58 | 17.72 | 26.87 |
| S           | .D.          | 0.010 | 93.1   | 0.004 | 0.5    | 0.3    | 0.38       | 26.5   | 0.05  | 0.046 | 0.7   | 0.2   | 28.4   | 51.28  | 11.69 | 7.29  |
| Р           | 25           | 0.008 | 109.8  | 0.001 | 0.2    | 0.1    | 0.06       | 4.6    | 0.01  | 0.009 | 0.5   | 0.0   | 8.3    | 287.06 | 9.73  | 21.01 |
| Р           | 50           | 0.010 | 167.0  | 0.007 | 0.3    | 0.1    | 0.12       | 6.4    | 0.03  | 0.026 | 1.2   | 0.1   | 13.1   | 340.45 | 15.60 | 26.17 |
| Р           | 75           | 0.014 | 210.1  | 0.010 | 0.6    | 0.4    | 0.52       | 27.6   | 0.07  | 0.058 | 1.5   | 0.2   | 22.5   | 370.61 | 21.59 | 32.38 |
| PS          | 97.5         | 0.033 | 298.3  | 0.011 | 1.6    | 0.9    | 1.08       | 75.0   | 0.13  | 0.131 | 2.4   | 0.5   | 83.1   | 408.80 | 41.11 | 38.76 |
| Contrast (  | P97.5/P50)   | 3.49  | 1.79   | 1.54  | 5.18   | 8.88   | 8.88       | 11.72  | 5.33  | 5.04  | 2.00  | 10.00 | 6.37   | 1.20   | 2.64  | 1.48  |
| Contrast (I | MAX/P97.5)   | 1.05  | 1.01   | 1.02  | 1.03   | 1.13   | 1.13       | 1.12   | 1.05  | 1.07  | 1.08  | 1.00  | 1.21   | 1.01   | 1.11  | 1.04  |




|             | Method       | MA250  |            |
|-------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|
| lower dete  | ection limit | 0.01   | 0.02   | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | Calculated |
| Sample      | Туре         | La_PPM | Ce_PPM | Pr_PPM | Nd_PPM | Sm_PPM | Eu_PPM | Gd_PPM | Tb_PPM | Dy_PPM | Ho_PPM | Er_PPM | Tm_PPM | Yb_PPM | Lu_PPM | TREO_ppm   |
| 138195      | Rock         | 11.60  | 23.20  | 2.2    | 7.7    | 1.2    | 0.6    | 0.8    | 0.1    | 0.4    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 58.4       |
| 138196      | Rock         | 1.70   | 3.55   | 0.4    | 1.4    | 0.3    | 0.2    | 0.3    | 0.1    | 0.2    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 11.2       |
| 138197      | Rock         | 6.70   | 15.66  | 1.5    | 5.3    | 1.3    | 0.1    | 1.1    | 0.1    | 0.7    | 0.1    | 0.2    | 0.1    | 0.2    | 0.1    | 42.3       |
| 138203      | Rock         | 55.30  | 118.42 | 13.3   | 42.1   | 7.5    | 0.3    | 4.9    | 0.5    | 2.9    | 0.5    | 1.2    | 0.2    | 1.3    | 0.2    | 310.0      |
| 138204      | Rock         | 109.70 | 225.47 | 25.3   | 89.0   | 12.9   | 0.2    | 8.3    | 0.8    | 4.1    | 0.7    | 1.9    | 0.3    | 2.3    | 0.4    | 589.2      |
| 138205      | Rock         | 6.30   | 13.68  | 1.2    | 4.4    | 0.9    | 0.3    | 0.7    | 0.1    | 0.4    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 34.7       |
| 138206      | Rock         | 1.50   | 2.74   | 0.3    | 1.0    | 0.2    | 0.4    | 0.2    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 8.6        |
| 138207      | Rock         | 22.20  | 42.87  | 4.0    | 13.6   | 2.0    | 0.5    | 1.2    | 0.1    | 0.4    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 104.0      |
| 138227      | Rock         | 49.00  | 100.51 | 10.7   | 32.3   | 4.4    | 0.5    | 2.3    | 0.2    | 0.8    | 0.1    | 0.2    | 0.1    | 0.1    | 0.1    | 238.4      |
| 138228      | Rock         | 5.00   | 10.58  | 1.0    | 3.5    | 0.7    | 0.1    | 0.5    | 0.1    | 0.4    | 0.1    | 0.2    | 0.1    | 0.4    | 0.1    | 29.1       |
| Μ           | lin          | 1.50   | 2.74   | 0.3    | 1.0    | 0.2    | 0.1    | 0.2    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 8.6        |
| М           | ax           | 109.70 | 225.47 | 25.3   | 89.0   | 12.9   | 0.6    | 8.3    | 0.8    | 4.1    | 0.7    | 1.9    | 0.3    | 2.3    | 0.4    | 589.2      |
| Me          | ean          | 26.90  | 55.67  | 6.0    | 20.0   | 3.1    | 0.3    | 2.0    | 0.2    | 1.0    | 0.2    | 0.4    | 0.1    | 0.5    | 0.1    | 142.6      |
| S.          | D.           | 34.96  | 72.20  | 8.2    | 28.0   | 4.1    | 0.2    | 2.6    | 0.3    | 1.3    | 0.2    | 0.6    | 0.1    | 0.8    | 0.1    | 187.1      |
| P           | 25           | 5.33   | 11.36  | 1.1    | 3.7    | 0.8    | 0.2    | 0.6    | 0.1    | 0.4    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 30.5       |
| P           | 50           | 9.15   | 19.43  | 1.9    | 6.5    | 1.3    | 0.3    | 1.0    | 0.1    | 0.4    | 0.1    | 0.2    | 0.1    | 0.1    | 0.1    | 50.3       |
| P           | 75           | 42.30  | 86.10  | 9.0    | 27.6   | 3.8    | 0.5    | 2.0    | 0.2    | 0.8    | 0.1    | 0.2    | 0.1    | 0.4    | 0.1    | 204.8      |
| P9          | 7.5          | 97.46  | 201.38 | 22.6   | 78.4   | 11.7   | 0.6    | 7.5    | 0.7    | 3.8    | 0.7    | 1.7    | 0.3    | 2.1    | 0.4    | 526.4      |
| Contrast (I | P97.5/P50)   | 10.65  | 10.36  | 12.22  | 12.07  | 9.35   | 1.93   | 7.93   | 14.65  | 9.58   | 13.10  | 11.62  | 5.55   | 20.75  | 7.10   | 10.46      |
|             | MAX/P97.5)   | 1.13   | 1.12   | 1.12   | 1.13   | 1.10   | 1.04   | 1.10   | 1.09   | 1.07   | 1.07   | 1.09   | 1.08   | 1.11   | 1.13   | 1.12       |



| Stations | UTM<br>Zone | Easting | Northing | Lithology                       | Sample Numbers | Grain Size<br>(cm) | Mica colour  | Spodum<br>ene<br>Present | Lepidolit<br>e | Tourm<br>aline<br>Presen<br>t | Beryl<br>Prese<br>nt | Garn<br>et<br>Prese<br>nt | Magnet<br>ite<br>Present | Additional Notes                                                                                               |
|----------|-------------|---------|----------|---------------------------------|----------------|--------------------|--------------|--------------------------|----------------|-------------------------------|----------------------|---------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| 2315009  | 18N         | 526535  | 5765880  | Granite with<br>pegmatite veins | 138227         | <5 cm              | Black        |                          |                |                               |                      |                           |                          | Pegmatite veins present                                                                                        |
| 2315010  | 18N         | 530018  | 5765713  | Granite                         | 138228         | <10 cm             | Black        |                          |                |                               |                      |                           |                          |                                                                                                                |
| 2315011  | 18N         | 532698  | 5766892  | Pegmatite                       | 138195         | <20 cm             | Black        |                          |                |                               |                      |                           |                          | Graphic texture; perthitic feldspar                                                                            |
| 2315012  | 18N         | 533822  | 5768147  | Pegmatite                       | 138196, 138197 | <15cm              | Black        |                          |                |                               |                      | Yes                       |                          | Fine disseminated garnets in bands; Sample<br>138197 Is a boulder sample of a tourmaline-<br>bearing pegmatite |
| 2315014  | 18N         | 530632  | 5771972  | Pegmatite vein in<br>Granite    | 138205         | <10 cm             | White, Black |                          |                |                               |                      |                           |                          | Trace Muscovite and Biotite                                                                                    |
| 23CM003  | 18N         | 529323  | 5770686  | Monzonite                       | Not Assayed    | <1 cm              | Black        |                          |                |                               |                      | Yes                       |                          | Float                                                                                                          |
| 23CM005  | 18N         | 529440  | 5770707  | Pegmatite                       | 138203, 138204 | <15 cm             | Black        |                          |                |                               |                      | Yes                       |                          | two samples taken, coarse biotite                                                                              |
| 23CM006  | 18N         | 527248  | 5771149  | Pegmatite                       | 138206         | <20 cm             | Black        |                          |                |                               |                      |                           |                          | Plagioclase and quartz dominated                                                                               |
| 23CM007  | 18N         | 527318  | 5771760  | Pegmatite                       | 138207         | <10 cm             | Black        |                          |                |                               |                      |                           |                          | Abundant quartz pockets                                                                                        |







## Appendix 3:

# JORC Code, 2012 Edition (Table 1) – Cancet West and Ross Channel and Rock Chip Sampling

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Grab samples were taken by hammer and wedge from natural breaks and exposures across the outcrops. Sampling targeted the most evolved fractions of the bodies with the goal of identifying lithium mineralisation within the pegmatite bodies. Assay samples were collected from outcrop and submitted to ALS Val D'or initially for analysis, following sample prep the pulps were sent to Bureau Veritas Timmins for analysis. Grab samples were analysed by portable-XRF in field to confirm that suspect spodumene crystals were not K-feldspar. The pXRF was used across two of the coarsest and most accessible pegmatites to assess geochemistry of individual crystals that were otherwise not possible to remove. Due to the grain size and irregular distribution of mineralisation throughout the pegmatites the assays will not be whole rock representations of the lithology.</li> <li>Channel samples was conducted by cutting 3 inch wide and 1.5 inch deep channels with a gas powdered rock saw across the zones of visible spodumene mineralisation. Channels were oriented perpendicular to the orientation of spodumene-bearing pods. Ideally, channels began in unmineralised pegmatite and crosscut through the zone of spodumene-mineralisation before returning to unmineralised pegmatite. Rock was chiselled out of the channel with a wedge and hammer and bagged and sample tagged in one meter interval samples. Assay samples were collected from the channel sampling and submitted to BV Timmins for analysis.</li> </ul> |



| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling techniques                                  | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic,<br/>etc) and details (eg core diameter, triple or<br/>standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                              | Not Applicable no drilling reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Drill sample recovery                                | <ul> <li>Method of recording and assessing core and chip<br/>sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and<br/>ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample<br/>recovery and grade and whether sample bias may<br/>have occurred due to preferential loss/gain of<br/>fine/coarse material.</li> </ul>                                                                                                                            | Not Applicable no drilling reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Logging                                              | <ul> <li>Whether core and chip samples have been<br/>geologically and geotechnically logged to a level of<br/>detail to support appropriate Mineral Resource<br/>estimation, mining studies and metallurgical<br/>studies.</li> <li>Whether logging is qualitative or quantitative in<br/>nature. Core (or costean, channel, etc)<br/>photography.</li> <li>The total length and percentage of the relevant<br/>intersections logged.</li> </ul>                                                                                          | <ul> <li>Rock and outcrop samples during the field programme were described geologically<br/>qualitatively based on important characteristics for LCT pegmatite. All data is stored<br/>digitally for review once the assay data is reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |
| Sub-sampling<br>techniques and<br>sample preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representativity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected,</li> </ul> | <ul> <li>No drilling reported.</li> <li>Grab sample sizes are in the range of 1-3kgs and considered appropriate for reporting of reconnaissance exploration rock sampling results.</li> <li>The samples were opportunistic in nature and taken from insitu outcrop.</li> <li>Lithium certified reference standard and blank material was submitted to ALS to be processed and analysed within the sample sequence. These returned appropriate results for the QA/QC.</li> <li>Channel sample sizes are in the range of 4.6 -17.5kg and are considered appropriate for reporting lithium grades at surface within pegmatite.</li> </ul> |



| Criteria                                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria<br>Quality of assay data<br>and laboratory tests | <ul> <li>JORC Code explanation</li> <li>including for instance results for field<br/>duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain<br/>size of the material being sampled.</li> <li>The nature, quality and appropriateness of the<br/>assaying and laboratory procedures used and<br/>whether the technique is considered partial or<br/>total.</li> <li>For geophysical tools, spectrometers, handheld<br/>XRF instruments, etc, the parameters used in<br/>determining the analysis including instrument<br/>make and model, reading times, calibrations<br/>factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg<br/>standards, blanks, duplicates, external laboratory<br/>checks) and whether acceptable levels of accuracy<br/>(i.e. lack of bias) and precision have been<br/>established.</li> </ul> | <ul> <li>All samples were initially sent to ALS in Val D'Or Quebec for sodium-peroxide borate fusion analysis. Following a delay in analysis, samples were then couriered to either Bureau Veritas Vancouver or Bureau Veritas Timmins for sodium-peroxide fusion with ICP-ES analysis (PF370) and ultra-trace analysis by multi-acid digest with ICP-MS finish (MA250).</li> <li>The suite of elements analysed was: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, In, K, La, Li, Li, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr.</li> <li>Prior to analysis samples were prepped by ALS Val D'Or Quebec or BV Timmins under PREP – 31 - Crush to 70 % passing 2mm, riffle split off 250g, pulverise split to better than 85% passing 75 microns or PRP70-250 Crush to 70% passing 10 mesh 250g riffle split and pulverize 85% - 75µm (-200 mesh).</li> <li>Competent person and Mercator Geological Services considers the sample and analytical procedures to be acceptable for an early-stage project.</li> <li>Off-cuts of samples were submitted to Saint Mary's University (Halifax, Nova Scotia,</li> </ul> |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Spectrometer (LIBS) to confirm lithium mineralisation.</li> <li>LIBs readings should not be considered a substitute for laboratory analysis and are not representative of the whole rock concentration but represent a relative concentration measured at a single point. It has been used to aid geological interpretation and confirm the minerals identified in the field are in fact lithium-bearing, while providing an approximate lithium concentration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Sampling bias introduced due to sampling sizes is unknown at this stage, given the early stage of the exploration programme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of<br>sampling and<br>assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                    | <ul> <li>Not applicable no drilling reported.</li> <li>Rock, channel and outcrop samples collected during the field programme were described geologically qualitatively based on important characteristics for LCT pegmatite. All data is stored digitally for review.</li> <li>Where analysis has been reported as Li, this has been converted to Li<sub>2</sub>O by multiplying the Li by the standard conversion factor of 2.153.</li> <li>Tantalum analysis reported Ta (ppm) Ta<sub>2</sub>O<sub>5</sub> (ppm) is derived using a conversion factor of Ta<sub>2</sub>O<sub>5</sub> = Ta x 1.2211</li> <li>Total Rare Earth Oxide (TREO) was calculated in IMDEX ioGAS where the ICP results for 15 rare earth elements were converted to oxides and summed: TREO = La<sub>2</sub>O<sub>3</sub> + Ce<sub>2</sub>O<sub>3</sub> + Pr<sub>2</sub>O<sub>3</sub> + Nd<sub>2</sub>O<sub>3</sub> + Eu<sub>2</sub>O<sub>3</sub> + Gd<sub>2</sub>O<sub>3</sub> + Tb<sub>2</sub>O<sub>3</sub> + Dy<sub>2</sub>O<sub>3</sub> + Ho<sub>2</sub>O<sub>3</sub> + Er<sub>2</sub>O<sub>3</sub> + Tm<sub>2</sub>O<sub>3</sub> + Yb<sub>2</sub>O<sub>3</sub> + Lu<sub>2</sub>O<sub>3</sub> The elemental to oxides conversion factors for the rare earth elements are: La (1.173), Ce (1.171), Pr (1.170), Nd (1.167), Sm (1.160), Eu (1.160), Gd (1.153), Tb (1.151), Dy (1.148), Ho (1.146), Er (1.143), Tm (1.142), Yb (1.139), Lu (1.137) . Any values that were below the detection limit were substituted by half the detection limit.</li> <li>The laboratory assay results were reviewed and verified by a number of company personnel and two external consultants including the CP.</li> </ul> |
| Location of data<br>points                  | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches,<br/>mine workings and other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                  | <ul> <li>Sample locations were recorded using a handheld GPS and recorded in NAD83 UTM Zone 18N.</li> <li>Relevant assay data and diagram can be found in Appendix 1 and Appendix 2.</li> <li>No Topographic Control has been utilised in reconnaissance sampling; topographic control may be determined utilising an appropriate Digital Elevation Model at a later date.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Data spacing and distribution               | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul> | <ul> <li>The data is not appropriate for use in estimating Mineral Resources and is not intended for such use. There has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource at this stage.</li> <li>No sample compositing was applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Criteria                                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation of data in<br>relation to geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the<br/>deposit type.</li> <li>If the relationship between the drilling orientation<br/>and the orientation of key mineralised structures is<br/>considered to have introduced a sampling bias, this<br/>should be assessed and reported if material.</li> </ul> | • The data is early-stage high level broad data to be used for initial interpretation of the lithium prospectivity within the Ross and Cancet West Projects.                                                                                                                                                              |
| Sample security                                               | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                            | • Assay samples were bagged, tagged, and sealed while under the control of Mercator geologists, and dropped by directly to ALS Global Val d'Or, Quebec, the samples were then couriered to ALS Vancouver and then Bureau Veritas Vancouver or Bureau Veritas Timmins for analysis. The chain of custody is deemed secure. |
| Audits or reviews                                             | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                    | • No specific external audits or reviews have been undertaken on the data by the Company.                                                                                                                                                                                                                                 |



## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                             |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and land tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting</li> </ul> | <ul> <li>See FIN ASX announcement September 2023<br/>Quarterly Report for a list of Mineral Claims related<br/>to Ross and Cancet West, additional claims added<br/>will be reported within the relevant quarterly report<br/>as they are granted.</li> </ul>          |
|                                         | along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                                                    | • The White Bear Lithium Discovery falls on the<br>Mineral Claims 2786392 & 2786393.                                                                                                                                                                                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The mineral claims are 100% owned by Fin<br/>Resources Ltd and its subsidiaries.</li> </ul>                                                                                                                                                                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                    | • The minerals claims have no underlying royalties.                                                                                                                                                                                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                    | • Cancet West and a portion of the Ross Project are<br>covered by Hydroelectric Reserves to the Province of<br>Quebec. Exploration is allowed under specific<br>conditions outlined by the province. Additional<br>conditions upon drilling approvals may be required. |
|                                         |                                                                                                                                                                                                                                                                                                                                                                    | • The mineral claims are in good standing.                                                                                                                                                                                                                             |
| Exploration done by other parties       | <ul> <li>Acknowledgment and appraisal of exploration by other<br/>parties.</li> </ul>                                                                                                                                                                                                                                                                              | • Limited previous exploration for Lithium within the region.                                                                                                                                                                                                          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                    | • See previous announcements by Fin Resources for a summary of historical exploration.                                                                                                                                                                                 |
| Geology                                 | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                    | • The Cancet West Project's claims are centred on 15<br>km of prospective greenstone strike length of the<br>Lac Guyer Greenstone Belt located within the La<br>Grande Sub province of the Archean Superior<br>Province in Quebec Canada. The Lac Guyer                |



| Criteria               | JORC Code explanation                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                    | Greenstone Belt is an east-west trending greenstone<br>belt which is host to multiple gold, base-metal and<br>lithium occurrences and deposits. Lithium<br>mineralisation is in the form of spodumene-bearing<br>pegmatites.                                                                                                                                                                                                                        |
|                        |                                                                                                                                                                                    | • The Lac Guyer Greenstone Belt is host to two major<br>lithium projects, both of which are along strike to<br>the east of the Cancet West Project; Patriot Battery<br>Metals (ASX: PMT) Corvette Project and Winsome<br>Resources Limited (ASX:WR1) Cancet Project                                                                                                                                                                                 |
|                        |                                                                                                                                                                                    | <ul> <li>The Ross Project is located in the northeast part of<br/>the Superior Province of the Canadian Shield craton.<br/>The Superior Province extends from Manitoba to<br/>Quebec, and is mainly composed of Archean-age<br/>rocks. The general metamorphism is of greenschist<br/>facies, except in the vicinity of intrusive bodies,<br/>where it reaches the amphibolite-to granulite facies.</li> </ul>                                      |
|                        |                                                                                                                                                                                    | <ul> <li>The Project's claims are centred on 30 km of<br/>prospective greenstone strike length of the Natel<br/>Formation within the La Grande Sub province of the<br/>Archean Superior Province in Quebec Canada. The<br/>Natel Formation consists of massive or pillowed<br/>flows of amphibolitized basalt, andesite, komatiite<br/>and rhyolite, as well as volcaniclastic units (block an<br/>lapilli tuff, lapilli tuff and tuff).</li> </ul> |
|                        |                                                                                                                                                                                    | <ul> <li>The La Grande Sub Province is host to a number of<br/>major lithium projects, including the Whabouchi<br/>Lithium Mine which along strike to the south west o<br/>the Ross Project Project.</li> </ul>                                                                                                                                                                                                                                     |
| Drill hole Information | <ul> <li>A summary of all information material to the<br/>understanding of the exploration results including o<br/>tabulation of the following information for all Mate</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | <ul> <li>holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Data aggregation methods                                         | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>Not Applicable, no drilling being reported, and no data aggregation methods or metal equivalents reported.</li> <li>TREO was calculated in IMDEX ioGAS where the ICP results for 15 rare earth elements were converted to oxides and summed: TREO = La<sub>2</sub>O<sub>3</sub> + Ce<sub>2</sub>O<sub>3</sub> + Pr<sub>2</sub>O<sub>3</sub> + Nd<sub>2</sub>O<sub>3</sub> + Sm<sub>2</sub>O<sub>3</sub> + Eu<sub>2</sub>O<sub>3</sub> + Gd<sub>2</sub>O<sub>3</sub> + Tb<sub>2</sub>O<sub>3</sub> + Dy<sub>2</sub>O<sub>3</sub> + Ho<sub>2</sub>O<sub>3</sub> + Er<sub>2</sub>O<sub>3</sub> + Tm<sub>2</sub>O<sub>3</sub> + Yb<sub>2</sub>O<sub>3</sub> + Lu<sub>2</sub>O<sub>3</sub> - Any values that were below the detection limit were substituted by half the detection limit.</li> </ul> |
| Relationship between mineralisation widths and intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | • Not Applicable, no drilling being reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Diagrams                                                         | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should include,<br/>but not be limited to a plan view of drill hole collar<br/>locations and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                         | • Diagrams are included in the body of the document and within Appendix 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Criteria                           | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced reporting                 | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                       | <ul> <li>All results reported are exploration results in nature.</li> <li>Selected significant individual assays are highlighted<br/>in the announcement, with all relevant sample<br/>assays provided in Appendix 1 &amp; 2. No historical<br/>drilling is known to exist.</li> </ul>                      |
| Other substantive exploration data | <ul> <li>Other exploration data, if meaningful and material, should<br/>be reported including (but not limited to): geological<br/>observations; geophysical survey results; geochemical<br/>survey results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock characteristics;<br/>potential deleterious or contaminating substances.</li> </ul> | <ul> <li>Assessment of other substantive exploration data is<br/>currently underway and not yet complete however<br/>considered immaterial at this stage.</li> </ul>                                                                                                                                        |
| Further work                       | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                | <ul> <li>Continued In-depth review of historical datasets and mapped outcrops across the Projects.</li> <li>Remote sensing and geophysics as required, with interpretation.</li> <li>Preparation and planning for a maiden drill programme is underway with commencement planned during Q1 2024.</li> </ul> |